سل یو2

سیستم همکاری در فروش فایل

سل یو2

سیستم همکاری در فروش فایل

دانلود مقاله ویژگی ها و کاربرد الگوریتم ها

مقاله ویژگی ها و کاربرد الگوریتم ها
دسته بندی ریاضی
بازدید ها 15
فرمت فایل doc
حجم فایل 79 کیلو بایت
تعداد صفحات فایل 16
مقاله ویژگی ها و کاربرد الگوریتم ها

فروشنده فایل

کد کاربری 4152
کاربر

*مقاله ویژگی ها و کاربرد الگوریتم ها*

چکیده : در این گزارش ما به بررسی ویژگی های الگوریتمهای کنترل همروندی توزیعی که بر پایه مکانیزم قفل دو مرحله ای(2 Phase Locking) ایجاد شده اند خواهیم پرداخت. محور اصلی این بررسی بر مبنای تجزیه مساله کنترل همروندی به دو حالت read-wirte و write-write می‌باشد. در این مقال، تعدادی از تکنیکهای همزمان سازی برای حل هر یک از قسمتهای مساله بیان شده و سپس این تکنیکها برای حل کلی مساله با یکدیگر ترکیب می‌شوند.

در این گزارش بر روی درستی و ساختار الگوریتمها متمرکز خواهیم شد. در این راستا برای ساختار پایگاه داده توزیعی یک سطحی از انتزاع را در نظر می‌گیریم تا مساله تا حد ممکن ساده سازی شود.

1. مقدمه : کنترل همروندی فرآیندی است که طی آن بین دسترسی های همزمان به یک پایگاه داده در یک سیستم مدیریت پایگاه داده چند کاربره هماهنگی بوجود می‌آید. کنترل همروندی به کاربران اجازه می‌دهد تا در یک حالت چند برنامگی با سیستم تعامل داشته باشند در حالیکه رفتار سیستم از دیدگاه کاربر به نحو خواهد بود که کاربر تصور می‌کند در یک محیط تک برنامه در حال فعالیت است. سخت ترین حالت در این سیستم مقابله با بروز آوری های آزار دهنده ای است که یک کاربر هنگام استخراج داده توسط کاربر دیگر انجام می‌دهد. به دو دلیل ذیل کنترل همروندی در پایگاه داده های توزیعی از اهمیت بالایی برخوردار است:

1. کاربراان ممکن است به داده هایی که در کامپیوترهای مختلف در سیستم قرار دارند دسترسی پیدا کنند.

2. یک مکانیزم کنترل همروندی در یک کامپیوتر از وضعیت دسترسی در سایر کامپیوترها اطلاعی ندارد.

مساله کنترل همروندی در چندین سال قبل کاملا مورد بررسی قرار گفته است و در خصوص پایگاه‌داده‌های متمرکز کاملا شناخته شده است. در خصوص این مسال در پایگاه داده توزیعی با توجه به اینکه مساله در حوزه مساله توزیعی قرار می‌گیرد بصورت مداوم راهکارهای بهبود مختلف عرضه می‌شود. یک تئوری ریاضی وسیع برای تحلیل این مساله ارائه شده و یک راهکار قفل دو مرحله ای به عنوان راه حل استاندارد در این خصوص ارائه شده است. بیش از 20 الگوریتم کنترل همروندی توزیعی ارائه شده است که بسیاری از آنها پیاده سازی شده و در حال استفاده می‌باشند.این الگوریتمها معمولا پیچیده هستند و اثبات درستی آنها بسیار سخت می‌باشد. یکی از دلایل اینکه این پیچیدگی وجود دارد این است که آنها در اصطلاحات مختلف بیان می‌شوند و بیان های مختلفی برای آنها وجود دارد. یکی از دلایل اینکه این پیچدگی وجود دارد این است که مساله از زیر قسمتهای مختلف تشکیل شده است و برای هر یک از این زیر قسمتها یک زیر الگوریتم ارائه می‌شود. بهترین راه برای فائق آمدن بر این پیچدگی این است که زیر مساله ها و الگوریتمهای ارائه شده برای هر یک را در ی.ک سطح از انتزاع نگاه داریم.

با بررسی الگوریتمهای مختلف می‌توان به این حقیقت رسید که این الگوریتمها همگی ترکیبی از زیر الگوریتمهای محدودی هستند. در حقیقت این زیر الگوریتمها نسخه‌های متفاوتی از دو تکنیک اصلی در کنترل همروندی توزیعی به نامهای قفل دو مرحله ای و ترتیب برچسب زمانی می‌باشند.

همانطور که گفته شد، هدف کنترل همروندی مقابله با تزاحمهایی است که در اثر استفاده چند کاربر از یک سری داده واحد برای کاربران بوجود می‌آید است. حال ما با ارائه دو مثال در خصوص این مسائل بحث خواهیم نمود. این دو مثال از محک معروف TPC_A مقتبس شده اند. در این مثالها، یک سیستم اطلاعات را از پایگاه داده ها استخراج کرده و محاسبات لازم را انجام داده و در نهایت اطلاعات را در پایگاه داده ذخیره می‌نماید.

حالت اول را می‌توان بروزآوری از دست رفته نامید. حالتی را تصور کنید که دو مشتری از دو سیستم مجزا بخواهند از یک حساب مالی برداشت نمایند. در این حالت فرض کنید در غیاب سیستم کنترل همروندی، هر دو با هم اقدام به خواندن اطلاعات و درج اطلاعات جدید در سیستم میکنند. در این حالت در غیاب سیستم کنترل همروندی تنها آخرین درج در سیستم ثبت می‌شود. این حالت در شکل 1 نشان داده شده‌ است.

شکل 1 نمایش حالت بروز آوری از دست رفته

حالت دوم حالتی است که در آن اطلاعات صحیح از پایگاه داده استخراج نمی‌شود. در این حالت فرض کنید دو مشتری بخواهند کارهای ذیل را انجام دهند.

  • مشتری 1: بخواهد یک چک 1 میلیونی را به حساب X واریز و از حساب Y برداشت نماید.
  • مشتری 2: بخواهد بیلان حساب مالی X و Y شامل کل موجودی را نمایش دهد.

در غیاب کنترل همروندی همانطور که در شکل 2 نشان داده شده‌است، تزاحم بین پروسس ها بوجود خواهد آمد. فرض کنید در زمانی که مشتری 1 اطلاعات را از حساب Y خوانده و اطلاعات حساب X را دریافت نموده و 1 میلیون از حساب Y برداشت نموده ولی هنوز 1 میلیون به حساب X و اریز نکرده مشتری 2 اطلاعات کل دو حساب را دریافت نموده و نتیجه را چاپ نماید. در این حالت مشتری شماره 2 اطلاعاتی را که به عنوان بیلان نمایش می‌دهد 1 میلیون از مقدار واقعی کمتر است. این حالت یک فرق اساسی با حالت اول دارد و آن این است که در این حالت نتیجه نهایی در پایگاه داده درست خواهد بود در حالیکه اطلاعات دریافت شده بصورت موقت غلط خواهند بود.

شکل 2 خواندن اطلاعات نادرست از سیستم

مساله کنترل همروندی در پایگاه داده های توزیعی تا حدودی شبیه مساله دوبه‌دو ناسزگاری در سیستم عامل می‌باشد. در مساله دوبه‌دو ناسازگاری، هماهنگی جهت دسترسی به منابع سیستم ائم از حافظه، ابزارهای ورودی و خروجی و CPU و .... بوجود می‌آید. در این حالت راه حلهای گوناگونی ائم از قفلها، سمافورها، مونیتورها و ... پیشنهاد شده است.


دانلود مقاله اهمیت امار در پزشکی

مقاله اهمیت امار در پزشکی
دسته بندی ریاضی
بازدید ها 13
فرمت فایل doc
حجم فایل 158 کیلو بایت
تعداد صفحات فایل 40
مقاله اهمیت امار در پزشکی

فروشنده فایل

کد کاربری 4152
کاربر

*مقاله اهمیت امار در پزشکی*


مقدمه:

اولین قدم در توصیف وتحلیل داده های آماری به طور معمول معرفی داده ها به صورت یک جدول یانمودار است. این راه آسانی برای خلاصه کردن داده هاست وبرای خواننده خصوصیات اصلی داده ها را مشخص می کند این طریقه در عمل ، داده ها را در یک شکل منسجم برای خواننده می کند که در غیر این صورت انبوهی از اشکال مبهم در پیش روی وی خواهد بود بدیهی است که نحوه ی ارائه ی دقیق داده ها به موضوع مطالعه ، روشها واهداف تحلیل آماری بستگی دارد.

کسانی که آمار مقدماتی وروشهای محاسباتی آمار را به واداشتن تئوری آمار به کار می‌برد اغلب با پرسشهای بیشماری روبرو می شوند. مثلاَ می پرسند«چرا در فورمول واریانس یک نمونه n تایی گاهی n-1 دیده می شود؟»

«چرا معدل یک نمونه ی تصادفی از توزیع نرمال بهترین برآورد برای پارامتر میانگین است؟»« چرا فلان فرض آماری را یک آمار دان رد می کندوآمار دان دیگر رد نمی کند؟» آمار ریاضی یاتئوری آمار به اینگونه پرسشها پاسخ می دهد این تئوری را با وجود ریشه های تاریخی در حقیقت فیشرونیمان در آمار دان برجسته در سالهای 1930 بنا کردند وسپس دیگران دنبال کار آنها را گرفتنددر عصر ما دهها کتاب وصدها مقاله ی ارزنده در زمینه ی آمار ریاضی وکار برد آن در علوم ومهندسی ، علوم پزشکی ، علوم اجتماعی وتربیتی واقتصاد ومدیریت یافته می شود بااین حال پژوهش درباره‌ی آمار ریاضی ونوآوریهای سودمند برای روشهای آماری همچنان ادامه دارد.

در روش آماری داده ها یعنی اطلاعات عددی درباره امری ، را طبق قواعد خلاصه می‌کنیم وسپس جدولهای فراوانی وگرافهای آماری ارائه می دهیم در درس امتحان یااصول شانس وقوانین متغیرهای تصادفی آشنایی پیدا می کنیم در آمار ریاضی وبه یک نوع نتیجه گیری بنام( نتیجه گیری آماری) می پردازیم مفهوم آمار واحتمال یا «اندیشه آماری » عبارت است از جمع آوری داده های عددی درباره ی امری وتجزیه وتحلیل آنها بر اساس مدلهای آماری ونتیجه گیری آماری برای ارائه ی نظریه ای درباره ی آن امر در زبان روزانه آمار عبارت است از داده های عددی درباره ی امری که با مشاهد‌های متفاوت به دست آمده اند.

اندیشه ی آماری وروش علمی راهم پژوهشگران وهم افراد عادی به کار برده اند ومی‌برند .آلبرت انیشتین بابررسی نظریه ی نیوتن وناسازگاری که در آن وجود دارد نظریه‌ی خود را جانشین آن می کند.

در آمار ریاضی آنچه را که به نتیجه گیری آماری مربوط می شود با اسلوب ریاضی وقوانین احتمال وچند ایده مهم آماری مانند تابع را ستنمایی ونسبت راستنمایی بررسی می کنند.

برداشت آماری ، جزئی از یک روند کلی به نام روش علمی است در عصر ما با استفاده ازداده هایی که از راه مشاهده یا آزمایش یا پرسش تهیه می شوند وبه کار بردن روشهای آماری ، پژوهشگران برای کسب معرفت وارائه ی نظریه های جدید در رشته‌ی خود همواره در تلاش اند.

روش علمی یاروش عاقلانه برای کسب نظریه های جدید وحل مسائل انسانی وعلمی شامل مراحل زیر است.


دانلود تحقیق ریاضیات بابلی و مصری

ریاضیات اولیه برای توسعه خود نیازمند یک پایه عملی که چنین پایه ای با پیدا شدن اشکال پیشرفته تر بوجود آمد در امتداد برخی از رودخانه های بزرگ آسیا و آفریقا مانند نیل در آفریقا و دجله و فرات و یانگ سه و گنگ در نواحی مختلف آسیا اشکال جدیدی بوجود آمد
دسته بندی ریاضی
بازدید ها 8
فرمت فایل doc
حجم فایل 123 کیلو بایت
تعداد صفحات فایل 14
تحقیق ریاضیات بابلی و مصری

فروشنده فایل

کد کاربری 1024
کاربر

ریاضیات بابلی و مصری


شرق باستان
ریاضیات اولیه برای توسعه خود نیازمند یک پایه عملی که چنین پایه ای با پیدا شدن اشکال پیشرفته تر بوجود آمد. در امتداد برخی از رودخانه های بزرگ آسیا و آفریقا مانند نیل در آفریقا و دجله و فرات و یانگ سه و گنگ در نواحی مختلف آسیا اشکال جدیدی بوجود آمد.
در امتداد برخی از رودخانه های بزرگ افریقا و آسیا یعنی نیل در افریقا دجله و فرات در آسیای غربی سند و پس از آان گنگ در آسیای جنوبی میانه و هوانگ هو و پس از آن یانگ تسه در آسیای شرقی بود که اشکال جدید که زمینهای واقع در امتداد این رودخانه ها به نواحی کشاورزی ثروتمندی تبدیل شوند.
با خشک کردن باتلاق و کنترل سیلاب و آبیاری این امکان وجود داشت که زمین هایی که در امتداد اینها قرار گرفته ا ند تبدیل به یک کشاورزی ثروتمند شوند.
ریاضیات اولیه در نواحی معینی از شرق باستان برای خدمت به کشاورزی و مهندسی بوجود آمده باشد یک تقویم قابل استفاده ایجاد دستگاههای اوزان و مقادیر برای استفاده در برداشت محصول ، انبارکردن و تقسیم غذا و غیره ... در تعیین قدمت اکتشافی دو مشکل وجود داشت:
1) در ماهیت ایستاپی ساخت اچتماعی و انزوای طولانی برخی از نواحی و 2) خبر موادی که کشفیات بر روی آنها ثبت می شد.
در قدیم بابلیان کشفیات خود را به روی سفالهای بادوام ثبت می کردند و مصریها بر روی سنگ و پاپیروس که از همه بادوام تر بود. در این میان هندی ها و چینی ها یافته های خود را روی خاشاک و برگ درختان ثبت می کردند که ازدوام بسیار پائینی برخوردار بود حال به مطالعه مطالب کشف شده در بابل و مصر می پردازیم.
بابل:
منابع
باستان شناسانی که در بین النهرین کار می کند از قبل از اواسط قرن نوزدمم تا کنون حدود نیم میلیون لوح سفالی منقوش از زیر خاک در آورده اند. بیشتر از 50 هزار لوح تنها در شهر باستانی نیپور به دست آمده.
مجموعه های کثیری از این لوح ها در موزه های پاریس ، برلین و لندن و نیز در دانشگاههای ییل کلمبیا و پلسیلوانیا موجودند. اندازه این لوحها متفاوت است و بین آنها لوحهایی به شکل مربع به مساحت چند اینچ و نیز لوحهایی به اندازه یک کتاب معمولی به چشم می خورد.
گاهی نوشته روی این لوح ها تنها در یک طرف لوح و یا در هر دو طرف آن است. از این نیم میلیون لوح 300 تای آنها صرفاً ریاضی شناسایی شده اند که شامل جداول و سیاهه های از مسائل ریاضی هستند ما دانش خود را از ریاضیات بابلی مدیون همین لوحها هستیم. تا پیش از سال 1800 قبل از میلاد کوشی برای کشف رمز خط میخی نمی شد در این سال عده ای مسافر اروپایی متوجه کتیبه های منقش در عمل 300 پایی در منطقه بیستون در شمال غربی لیوان کنونی کشف کردند.
معمای کتیبه های سرانجام توسط سرهنری کرسویک رالینسون (1895 – 1810) دیپلمات آشورشناس کشف شد که او کلیدی را که باستان شناس و زبان شناس آلمانی به نام جرج گئورگ فرید ریش ( 1853 – 1775) پیشنهاد کرده بود تکمیل کرد.
با بوجود آمدن توانایی لازم برای خواندن متون میخی لوحهای بابلی بدست آمده معلوم شد که این لوحها ظاهراً به کلیه مراحل و علایق زندگی آن اعصار مربوط است برخی از متون ریاضی موجود مربوط به دوره نهایی سومری در سال 21000 ق م است.
دومین گروه که گروه بزرگی هم است مربوط به سلسله بابلی اول ( یعنی دوره شاه حمورایی) تا حدود سال 1600 ق.م. می باشد .
سومین گروه مربوط به سالهای 6000 ق.م تا 300 ب.م می رسد. که مربوط به دورهای امپراتوری بابلی جدید ( بخت النصر) و دوره های بعدی پارسی و سکوی می باشد چون که تغییر این لوح هنوز در دست اقدام است پس بعید نیست به نتایج چشمگیرتری در آینده برسیم.
ریاضیات بازرگانی و ارضی :
حتی قدیمیترین لوحها نشانی از مهارت در محاسبه در سطح عالی داشته و وجود دستگاه موضعی شصتگانی را طی مدت زمانی طولانی آشکار می کند. متون متعددی از این دوره اولیه به واگذاری و محاسباتیکه بر پایه این معاملات می پردازد در دست است.
این لوحها نشان می دهند که سومریهای باستان با کلیه انواع قراردادها رسید ، سفته ضمانت و رهن مقابله سروکار داشته اند و نیز اسناد شرکتهای بازرگانی و لوحهایی که با دستگاه های اوزان و مقادیر سروکار دارند بدست آمده اند.
در این 300 لوح ریاضی که بدست آمده حدود 200 تای آنها جداول هستند. این لوحهای جدولی شامل جدولهای ضرب، عکسها، مربعات و مکعبات و حتی جدولهای توان نیز هستند. به نظر می رسد که تقویم در بابل به اعصار قدیمیترین مربوط می شود.
هندسه:
هندسه بابلی با پیوند نزدیکی با مسامی عملی دارد. بابلی های 2000 تا 1600 ق.م با قواعد کلی:
1) محاسبه مساحت مستطیل
2) مساحت مثلثهای قائم الزاویه و متساوی الساقین
3) ذوزنقه قائم الزاویه
4) حجم مکعب مستطیل و کلی تر از آن
5) حجم منشور قائمی که قاعده آن ذوزنقه خاصی است آشنا بوده اند آنها محیط دایره را به صورت سه برابر قطر و مساحت را یک دوازدهم در مجذور محیط بدست می آورده اند که با فرض ns3 درست است.
6) آنها حجم استوانه مستدیر قائم را پیدا کردن حاصلضرب قاعده در ارتفاع بدست می آورند.
7) اما حجم مخروط ناقص یا هر ناقص مربع القاعده را به غلط به صورت حاصلضرب ارتفاع در سقف مجموعه قاعده ها محاسبه می کردند. و اینکه می دانند که اضلاع متناظر در دو مثلث قائم الزاویه متشابه متناسبند و اینکه عمود مثلث متساوی الساقین قاعده را نصف می کند و همچنین محاط در یک نیم دایره قائمه است. قضیه فیثاغورث را هم بلد بودند و به جای در مسائل فرض می کردند.
مسائل متعددی راجع به خط قاطع موازی با یک ضلع مثلث قائم الزاویه وجود دارد که منجر به حل معادلات درجه دوم می شوند.
و نیز بعضی از مسائل منتهی به دستگاه معادلات می شود در یک لوح یک مورد دستگاه ده معادله ده مجهول به چشم می خورد. در یک لوح دیگر که مربوط به سال 1600 ق.م است و در دانشگاه بیل نگهداری می شود که معادله درجه سوم کلی در بحث هرمهای ناقص وجود دارد که نتیجه حذف Z از دستگاه معادلات از نوع زیر است.

تقسیم بر محیط دایره به 360 جز مساوی را بدون تولید به بابلیهای عهد باستان مدیونیم X در دوره های آغازین سومری واحد بزرگی برای اندازه گیری فاصله که توی میل بابلی وجود داشت که تقریباً معادل 7 مایل امروزی است.
و چون میل بابلی برای اندازه گیری فاصله های طولانی بود به صورت واحد زمان یعنی زمانی برای پیمودن یک میل بابلی لازم است در می آمده که بعدها برای اندازه گیری فواصل زمان مورد پذیرش قرار گرفت.


دانلود راهبردهای حل مسأله در ریاضی

مسأله را می توان به زبان ساده تعریف کرد هر گاه فردی بخواهد کاری انجام دهد ولی نتواند به هدف خود برسد، برایش مسأله ایجاد می شود
دسته بندی ریاضی
بازدید ها 8
فرمت فایل doc
حجم فایل 10 کیلو بایت
تعداد صفحات فایل 12
راهبردهای حل مسأله در ریاضی

فروشنده فایل

کد کاربری 1024
کاربر

راهبردهای حل مسأله در ریاضی


مقدمه
مسأله را می توان به زبان ساده تعریف کرد. هر گاه فردی بخواهد کاری انجام دهد ولی نتواند به هدف خود برسد، برایش مسأله ایجاد می شود. به عبارت دیگر هر موقعیت مبهم یک مسأله است. حل مسأله نوعی از یادگیری بسیار پیچیده است. مسأله و تلاش برای حل آن جزئی از زندگی هر فرد است. فرایند برخورد با شرایط زندگی همان مسأله است.
دو دیدگاه متفاوت در آموزش ریاضیات نسبت به حل مسأله وجود دارد:
1. ریاضی یاد بدهیم تا دانش آموزان بتوانند مسأله حل کنند.
2. ریاضی را با حل مسأله آموزش دهیم.
در دیدگاه اول آموزش ریاضی مطابق با محتوای موضوعی است و مفاهیم متفاوتی تدریس می شوند. انتظار داریم دانش آموزان با استفاده از دانش ریاضی خود مسائل متفاوت را حل کنند. اما در دیدگاه دوم آموزش ریاضیات از طریق حل مسأله اتفاق می افتد. یعنی دانش آموز مسأله حل می کند و در ضمن آن محتوا و مفاهیم جدید ریاضی را می سازد، کشف می کند و یا یاد می گیرد . در حال حاضر ، دیدگاه دوم در آموزش ریاضیات بیش تر مطرح است. در این نگاه حل مسأله نقطه ی تمرکز یا قلب تپنده ی آموزش ریاضیات است.

مهارت حل مسأله
اگر از معلمان ریاضی سؤال شود که مشکل اصلی دانش آموزان در درس ریاضی چیست؟ به یقین خواهند گفت: آنها در حل مسأله ناتوان هستند.
درمطالعه ی تیمز نیز همین موضوع را شاهد بودیم. چون در اغلب مسأله های آزمون کتبی این مطالعه عملکرد دانش آموزان پایین است. در واقع می توانیم بگوییم دانش آموزان توانایی یا مهارت حل مسأله را ندارند.
یکی از دلایل این ناتوانی ، فقدان طراحی برای آموزش مهارت حل مسأله به دانش آموزان بوده است. یا به عبارتی معلمان به آنها یاد نداده اند که چگونه مسأله را حل کنند. هر گاه دانش آموزان با مسأله ای روبروه شده و از حل آن عاجز مانده اند معلمان تنها به بیان راه حل یا پاسخ مسأله اکتفا کرده اند و نگاه های پرسش گر، کنجکاو ومتحیر دانش آموزان با این سؤال باقی مانده است: معلم ما چگونه توانست مسأله را حل کند؟ راه حل مسأله چگونه به فکر او رسید؟ چرا ما نتوانستیم راه حل مسأله را کشف کنیم؟
در خیلی از مواقع معلمانی که سعی کرده اند به طریقی حل مسأله را به دانش آموزان خود یاد دهند، راه را اشتباه رفته اند و آموزش های نادرست داده اند. برای مثال به دانش آموزان گفته اند: عددهای مسأله بسیار مهم اند. زیر آن ها خط بکشید. فراموش نکنید که باید از آن ها استفاده کنید. همین آموزش نادرست باعث شده است. دانش آموزان اطلاعات مسأله را به خوبی تشخیص ندهند. وقتی مسأله زیربرای دانش آموزان کلاس سوم مطرح شد، آن عدد 747 را در عملیات مسأله دخالت دادند و با آن عدد عبارت های جمع و تفریق و ... نوشتند:
« یک هواپیمای بوئینگ 747 با 237 مسافر در فرودگاه نشست و 130 مسافر را پیاده کرد. حالا این هواپیما چند مسافر دارد؟
یا برای دانش آموزان گفته اند که درمسأله بعضی از کلمه ها بسیار مهم است. برای مثال اگر کلمه روی هم را دیدید مسئله مربوط به جمع است و اگر کلمه ی اختلاف را دیدید حتماً باید تفریق کنید.
به همین دلیل در مسأله زیر که در مطالعه ی تیمز (2003) آمده بود، عده ای از از دانش آموزان کلاس چهارم شرکت کننده. در این مطالعه به اشتباه افتادند و مسأله را به جای ضرب، جمع کردند.
«در یک سالن سینما 15 ردیف صندلی وجود دارد. در هر ردیف 19 صندلی قرار دارد . این سالن روی هم چند صندلی دارد؟ »
بهتر است این روش های آموزش نادرست را به کار نبریم و به دنبال طرحی برای آموزش حل مسأله به دانش آموزان باشیم.

آموزش حل مسأله
آیا حل مسأله آموزش دادنی است؟ یکی از دلایل فقدان طرحی برای آموزش حل مسأله به دانش آموزان ، این است که آموزشگران ریاضی تا چندین سال پیش معتقد بودند که حل مسأله آموزش دادنی نیست بلکه یک هنر یا ویژگی و توانایی است که بعضی از انسانها دارند و بعضی ندارند. بنابراین هیچ کس تلاش برای حل مسأله به دانش آموزان نمی کرد. اما تعداد کسانی که درمورد آموزش حل مسأله تحقیق می کنند بیش تر است.
یکی از افرادی که در مورد چگونگی حل مسأله و آموزش آن تحقیق کرد جرج پولیا است. حاصل کار او در کتاب «چگونه مسأله حل کنیم» منتشر شد. مرحوم احمد آرام این کتاب را ترجمه کرده است. او در مقدمه ی کتاب خود می گوید: « من یک ریاضیدان هستم. متخصص آموزش ریاضی نیستم، اما علاقمندم بدانم چرا من می توانم مسأله ریاضی را حل کنم و دیگران نمی توانند؟ چرا بعضی از دانشجویان مسأله ریاضی را حل می کنند ولی بعضی نمی توانند؟ او همین سؤال ها را دنبال کرد و مدلی برای تفکر حل مسأله و آموزش راهبردها ارائه کرد. پولیا دو حرف اساسی دارد. 1- مدل چهار مرحله ای برای تفکر حل مسأله 2- آموزش راهبردها که البته نکته دوم در آموزش اهمیت بیشتری دارد.


مدل چهار مرحل ای پولیا
فرایند تفکر حل مسأله برای افراد مختلف متفاوت است. پولیا تلاش کرده تفکر حل مسأله را به نوعی مدل سازی کند. او الگویی چهار مرحله ای را مطرح کرده است. در فرایند حل مسأله این چهار مرحله چهار گام طی می شوند تا یک مسأله ریاضی به طور کامل حل شود. مدل چهار مرحله ای او به این مشکل است: